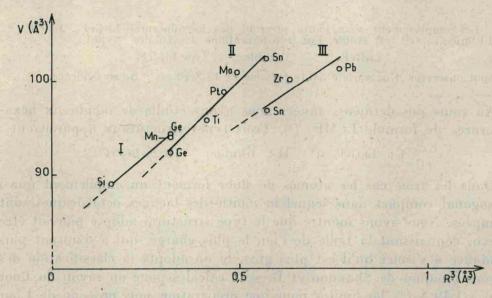
CHIMIE MINÉRALE. — Évolution structurale sous haute pression des hexafluorures Li₂MF₆. Note (*) de MM. Gérard Demazeau, Francis Ménil, Josik Portier et Paul Hagenmuller, présentée par M. Henri Moureu.

Le comportement sous haute pression des hexafluorures Li_2GeF_6 , Li_2TiF_6 , Li_2SnF_6 , Li_2ZrF_6 est étudié. Les transformations structurales : type Li_2GeF_6 β \rightarrow trirutile \rightarrow type Li_2ZrF_6

sont observées. Une variété haute pression de Li₂ZrF₆ est mise en évidence.

Au cours des dernières années nous avons étudié de nombreux hexafluorures de formule Li₂MF₆ (⁴). Trois types structuraux apparaissent :

I: Li₂GeF₆β; II: trirutile; III: Li₂ZrF₆.


Dans les trois cas les atomes de fluor forment un empilement quasi hexagonal compact dans lequel la moitié des lacunes octaédriques sont occupées. Nous avons montré que le type structural adopté pouvait être prévu, connaissant la taille de l'ion le plus chargé, qui a d'autant plus tendance à s'isoler qu'il est plus gros. Si on adopte la classification des rayons ioniques de Shannon et Prewitt calculés pour un rayon du fluor égal à 1,19 Å (²), les limites pour une préparation sous pression de 1 bar sont les suivantes :

Struc	ture a sir/n ymaki. i i	le plus chargé (Å)
Li ₂ Ge	F ₆ β	r < 0.68
Trirut	tile	0.68 < r < 0.83
Li ₂ Zr	F ₆	0.83 < r

Cette règle résulte de l'augmentation des forces de répulsion électrostatique due à l'accroissement du rayon ionique. Cette augmentation n'est pas compensée par un éloignement des ions les plus chargés, mais par un réarrangement des cations : les octaèdres MF₆ partagent trois de leurs arêtes avec les octaèdres occupés voisins dans la structure de type I, deux dans celle du type II tandis que dans celle de type III il n'y a plus d'arête commune.

Dans un mémoire précédent nous avons suggéré que l'augmentation de la pression devait jouer un rôle analogue à celui de l'accroissement de taille des ions M⁴⁺ (¹). L'évolution du volume occupé par un motif Li₂MF₆ en fonction du cube du rayon ionique vient à l'appui de cette hypothèse. Le volume du motif a été calculé à partir des données cristallographiques

publiées par Cox pour Li₂SiF₆ (³), par Hoppe et coll. pour Li₂MnF₆ (¹¹), Li₂PtF₆ (¹), Li₂ZrF₆ (⁵) et Li₂PbF₆ (⁶), par Brunton pour Li₂MoF₆ (७) et par nous-mêmes pour Li₂GeF₆ (⁶) et Li₂TiF₆ (⁶). La figure montre que pour un ion donné le passage de I à II et de II à III correspond à une diminution relative du volume du motif Li₂MF₆, condition nécessaire pour que les transformations sous pression aient lieu dans le sens prévu.

Variation du volume du motif Li2MF6 en fonction du cube du rayon de l'ion M4+ (2).

Afin de vérifier l'hypothèse précédente nous avons étudié le comportement sous pression de Li₂GeF₆ β, Li₂TiF₆, Li₂SnF₆ β et Li₂ZrF₆. Le dispositif générateur de la pression était une enceinte annulaire de type « Belt ». La capsule d'or contenant les échantillons était placée à l'intérieur d'une cellule haute pression en pyrophyllite. Le chauffage était réalisé à l'aide d'un microfour alimenté en courant continu sous basse tension.

La transformation Li₂GeF₆ β (type I) → Li₂GeF₆ α (type II) est observée à 20°C sous une pression de 75 kb, mais elle n'est pas complète même après des traitements prolongés.

Le passage du type II au type III a été observé pour Li₂TiF₆ et Li₂SnF₆ β . La transformation Li₂SnF₆ $\beta \rightarrow$ Li₂SnF₆ α est totale au bout de 1 h à 20°C sous 75 kb. La forme haute pression de Li₂TiF₆ a pu être obtenue par chauffage de quelques minutes de la phase trirutile à 500°C sous 75 kb. Isotype de Li₂ZrF₆ elle possède une symétrie hexagonale ($a = 4,880 \pm 0,005$ Å; $c = 4,550 \pm 0,005$ Å). Nous conviendrons d'appeler cette nouvelle variété allotropique α et la variété basse pression β par analogie avec Li₂SnF₆.

Nous avons recherché un quatrième type structural inconnu à pression ordinaire. Li₂ZrF₆ de basse pression, que nous appellerons β, se transforme à 700°C et 70 kb en une nouvelle variété α (tableau). Nous n'ayons pu trouver de composés isotypes parmi les fluorures et les oxydes de formules homologues. Il est vraisemblable que le type IV correspond à un nouvel empilement des anions assurant une coordinence plus élevée du zirconium. En l'absence de monocristaux il nous est difficile de préciser ce point.

TABLEAU

	Li	Li₂ZrF ₆ α
d _{obs} (Å)	$\frac{1}{I_0}$	$d_{ m obs}$ (Å)
5,25	90	2,048
4,48	100	2,030 1
3,554	20	2,007 1
3,445	30	1,927 1
2,969	35	1,796 1
2,854	25	1,750 1
2,626	10	1,724
2,540	15	1,701 1
2,394	5	1,585
2,236	5	1,533 1
2,138	10	

Dans la série étudiée, température et pression jouent des rôles opposés : une augmentation de pression entraı̂ne la transformation $\beta \to \alpha$, une élévation de température la transformation inverse. Si on considère l'équation de Clausius-Clapeyron :

$$\left(\frac{\delta P}{\delta T}\right) = \frac{\Delta H}{T \, \Delta V},$$

 $\delta P/\delta T$ et ΔV étant négatifs lors de la transition $\beta \to \alpha$, on voit que la transformation induite par la pression correspond à un accroissement d'entropie.

Cette étude a permis de mettre en évidence une série de transformations cristallines provoquées par la pression. Pour les types I, II et III l'augmentation des forces de répulsion électrostatiques se manifeste non pas par un changement de coordinence des ions les plus chargés, mais par une nouvelle disposition de ces derniers au sein du même empilement anionique. Ils tendent à occuper des sites qui possèdent le moins possible d'arêtes communes avec les octaèdres occupés voisins. Cette observation est d'ailleurs en parfait accord avec la troisième règle de Pauling. On peut la rapprocher de l'évolution structurale en fonction de la pression suivie par les fluorures ABF₃ (10):

 $BaNiO_3 hex. (2 L) \rightarrow BaRuO_3 hex. (9 L) \rightarrow BaTiO_3 hex. (6 L) \rightarrow perovskite (3 L).$

Les octaèdres (BF₆) qui, dans la structure initiale BaNiO₃ hex. (2 L), partagent deux de leurs faces avec les octaèdres voisins n'ont plus que des sommets communs dans la perovskite.

(*) Séance du 15 novembre 1971.

(1) J. Portier, F. Ménil et P. Hagenmuller, Bull. Soc. chim. Fr., 1970, p. 3485.

(2) R. D. SHANNON et C. T. PREWITT, Acta Cryst., B, 25, 1969, p. 925.

(3) B. Cox, J. Chem. Soc., 1954, p. 3251.

(4) H. HENKEL et R. HOPPE, Z. anorg. allgem. Chem., 359, 1968, p. 160.

(5) R. HOPPE et W. DÄHNE, Naturwiss., 47, 1960, p. 397.

5 74.T

(6) CH. HEBECKER et R. HOPPE, Naturwiss., 53, 1966, p. 106.

(7) G. Brunton, Mat. Res. Bull., 6, 1971, p. 555.

- (8) J. Portier, F. Ménil et J. Grannec, Comptes rendus, 269, série C, 1969, p. 327.
- (*) J. Portier, A. Tressaud, F. Ménil, J. Claverie, R. de Pape et P. Hagenmuller, J. Sol. State Chem., 1, 1969, p. 100.

(10) J. M. Longo et J. A. KAFALAS, J. Sol. State Chem., 1, 1969, p. 103.

(11) R. HOPPE, W. LIEBE et W. DÄHNE, Z. anorg. allgem. Chem., 307, 1961, p. 276.

Service de Chimie minérale structurale de l'Université de Bordeaux I, associé au C. N. R. S., 351, cours de la Libération, 33-Talence, Gironde.

ensured at 198 to 11 cl record a comment and sing at any household which the

the manufacture of the state of